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PREFACE

The MODCV (Modeled Ceiling and Visibility) program was developed by the United States Air Force
Environmental Technical Applications Center’s Environmental Simufation Branch (USAFETAC/DNY) for Air
Weather Service's Central Support Division (AWS/DOOX) aficr Air Weather Service asked for a computer model
that would help meet the climatological database needs of AWS field units by making ceiling and visibility
climatology available from a microcomputer. Probability tables produced by MODCYV can be uscd in the ficld to
forecast ceiling and visibility categories.

The main purpose of this technical noie is o familiarize AWS analysts and forecasters with how the MODCV
program works by describing the algorithms that generate the conditional and unconditional probability tables for
cloud ceilings and visibilities.

Original MODCV algorithms were developed by Mr. Albert R. Boehm in 1975. Capt Robert LaFchre latcr
cxpanded Boehm’s work to include conditional and unconditional climatology for ceiling, visibilily, and joint
ceiling-visibility.

For more information on ceiling and visibility modeling, see Chapter 3, USAFETAC/TN-82/A04, Basic Techniques
in Environmenial Simulation; Chapter 2; USAFETAC/TN-83/003, Ceiling/Visibility Simulation Model; and
Chapters 1-4, AWS-TR-75-259, Transormalized Regression Probability.
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Chapter 1

INTRODUCTION TO MODCYV

Description. MODCYV (Modeled Ceiling and Visibility) uses probabilities derived from cumulative lreguency
distributions 1o produce conditional and unconditional probabilities of ceiling, visibility, and joint ceiling and
visibility. MODCYV calculates probabilities for a given location by using modeling coefflicients specifically
determined from climatological data for that location. Eight sets of modeling coefficients that span 3-hour time
blocks are generated for each month.

Requirement and Development. Climatology requirements of the typical base weather station have, up to
now, been satisfied by Revised Uniform Standard Surface Weather Observations (RUSSWO), Wind Stratificd
Conditional Climatology (WSCC) tables, and AWS Climatic Briefs. But thc recent addition of the
microcomputer (0 most AWS stations provided for the possibility of letting forecasters complement thosc
printed summaries with climatology databases stored in their computers.

In 1985, therefore, USAFETAC’s Operating Location A at Asheville, NC, was asked o prepare cost estimates
for uransferring a climatological database package to floppy disks--a package that could be used on the Zenith
Z-100 microcomputers with which most AWS weather stations were equipped. Unfortunately, OL-A found that
it took at Jeast 31 diskeltes per siation to store its RUSSWO (4 diskettes), WSCC tables (24 diskeutes), Climatic
Brief (1 diskette), and Temperature-Dewpoint (TT/TD) curves (4 diskettes). The sheer size and extent ol Lic
disk library so created made microcomputer climatology a cumbersome and impractical undertaking, at Icast for
the time being.

Then in April 1986, AWS/DOOX asked USAFETAC to develop a modeled climatology that would be capable
of producing unconditional and conditional probabilities for ceiling, visibility, and joint ceiling and visibility.
That request was the basis for an extended USAFETAC project, probably to span a number of ycars, that will
eventually develop a comprehensive modeled climatology of all sensible weather elements. The results of
ceiling and visibility modeling efforts Lo date are described in the following chapters.
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2.2

Chapter 2

MODCYV METHODOLOGY

Unconditional Probability. Unconditional climatology data is easily tabulated at any location for which 2
representative period of record is available. Unconditional probability is based on the calculation of the relative
frequency at which a certain condition occurs. For example, the unconditional probability of ceiling below
3,000 feet at 00Z is found by dividing the number of 00Z observations with ceilings below 3,000 fect by the
total number of 00Z observations. This process is what we call the "tabular” approach 1o calculating frequency
distributions; RUSSWO ceiling and visibility climatology is an example of data produced with this method.

A flexible and extremely powerful alternative to the tabular approach is to modcl the "cumulative distribution
function,” or CDF, with a mathematical function. In other words, we use a mathematical equation 10 fit the
curve associatcd with the CDF. As a result, the cumulative probability associated with

any value of the continuous variable of interest can be derived from the equation:

P=Fx) 2.))

where F(x) is the function that simulates the curve of the CDF. Given any threshold value of the variable x,
therefore, we can calculate the unconditional probability that x will be below that threshold value. MODCY
uses this modeled distribution technigue to produce unconditional ceiling and visibility probabilitics. An
expanded discussion of fitting curves to the CDFs is given in section 3.2, Model Input.

Conditional Probability. The basic component of USAFETAC’s conditional ceiling and visibility probability
model is based on the Omswein-Uhlenbeck (O-U) stochastic (random) process, a first-order Markov process for
which each value of a random variable y, is considered a particular value of a stationary stochastic process. The

stochastic model relates a value of y, at time ¢ (y,), (0 an earlier initial value of y at time zero 0

A frequent assumption in statistical application is that the variable being analyzed is normally distributed.
Unlortunately, many meteorological variables (including ceiling and visibility) are not normally distributed.
However, variables can be transformed into a normal distribution by expressing the raw variable in terms of its
"equivalent normal deviate,” or END. This process, known as "transnormalization," is discussed by Bochm
(1976) and is summarized in Paragraph 2.3. Once the variables have been normalized, the joint density function
associated with the two variables y, and y, becomes:

vy = 1 (- W2 =2p(yo-1) (e =) +(i )°
J003) = etV [ 267(i-p) ] @2

where p is the serial correlation between successive vafues of y and where |t and O represent the mean and
standard deviation of y, respectively. Since we are intcrested in the conditional probability of y, given the initial

value of y,, a conditional distribution of the weather variables is required. I the weather process can be
approximated by a first-order Markov equation, then the value of y, is dependent only upon the value of y,. If
successive observations of y have a bivariate normal distribution, the conditional distribution of y, is normal
with a mean of:

E{(y:lyo)l= 0+ p(yo—1) .3
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and a variance of:
var [(n:ln) = 0% {1-p?)] (2.4)

Equations 2.3 and 2.4 are basic to the first-order Markov equation. Specifically, a value of the variablc y, can be
calculated, using:

Y=+ p(yo— 1) + 0V .-pPn, 2.5

If the variable of interest is distributed normally with a mean of zero and a variance of onc, N(0,1), then
equation 2.5 reduces to:

¥ =pyo + V(1-p?) 1, (2.6)

where p is the correfation coefficient between y, and y, separated by a time interval  (hours), and where 7], is a
random normal number. The process is considered Markov if p = p,, where p,, is the hour-to-hour correlation
associated with y. If P, is a constant, then this process is considered stationary and is known as the
"Ornstein-Uhlenbeck” (or O-U) process.

Application of the O-U process 10 meteorological variables is well documented in the literature (Gringoricn,
1966; Sharon, 1967; Gringorten, 1971; Whiton and Berecek, 1982). Its application 1o variables whose time
series has a random component and which adhere to the restrictions of the Markov process is justifiable.
"Stationarity” is a characteristic that is especially favorable for application Lo weather variables since predictions
derived frcm stationary processes will converge to the mean value of the variable y as the time ¢ increases. That
is, prediction from the O-U process will converge toward unconditional ciiinaiological valucs as the forecast
time period increases,

From equation 2.6 we can conclude that, for a specific value of y,, the value of M, will exceed a minimum
value 1|, as frequently as y, exceeds a minimum value y_. , given an initial value y,. In terms of probability,

P (W 2Nmin) = P (¥:>Ymin[0) QN

Now we can replace the value of T}, as y(1l0), the normalized value corresponding to the conditional probability
of y,. Using basic algebra, we can rewrite equation 2.6 as:

P(NiYo)} = P (¥:>Ymin Y0) (2.8)

where P(yy,) is the conditional probability of y, given the value of y,, P(y) is the unconditional probability of y
al time ¢, and P(y,) is the unconditional probability of y at time zero. MODCY uses equation 2.8 to calculate
conditional probabilities of ceiling and visibility. It should be clear by now that the conditional probability of y,
is a direct function of the unconditional probability of y, and y,. MODCV uses the modeled unconditional

probabilities discussed in Paragraph 2.2, "Unconditional Probability,” as input to the conditional probabuiry
equations.

Trarsnormalization. Although the O-U process dneen’s require that the variablc y, be rormally distribuicd,
equation 2.6 is derived by assuming that it is distributed N(0,1). Since most weather variables are not normally
distributed, a transformation 10 a normal distribution is required. This process is rcferred 1o as
"transnormalization.”
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Figure 2.1. Cumulative Distribution Function (CDF) of the Ceiling at Loring AFB,
ME, for January at 1200 LST. The CDF is cxtracted [rom the Loring AFB RUSSWO.

Figure 2.1 shows an empirical cumulative distribution function (CDF) for cciling height. It is is simply a graph
of threshold ceiling heights (C)) versus the cumulative probability (P) of a ceiling height less than a given

threshold value. The dashed lines identify the cumulative probability that a ceiling height (C) is lcss than a
threshold value (C)) of 5,000 feet. The probability that C is less than C, = 5,000 ft is 0.351; thatis, P(C <

C)=0.351. In the context of the standard normal density function, P(C<C) corresponds to some END

represcnted by &. In other words, the integral of the standard normal density function f(z) from z=—otoz=¢
is equal o P(C<C,) where

. 1 I
f@ = T &7 (#*2) 29
and
(C) = P(C<Cy) =] f(z)d: 2.10)

The probability P(C<C) represents the area under the standard normal curve as shown in Figure 2.2. For this
exampie, the END associated with P(C<C) = 0.351 is ¢ = -0.381.
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Figure 2.2. Normal Probability Distribution. Integrated (rom -oo t0 ¢ = -0.381, it yields a
cumulative probability () of 0.351.

Using the transnormalization process, the probability of a ceiling height less than some threshold corresponds to
a specilic END that is based on the empirical CDF of ceiling hcights. Since ENDs are distributed N(0,1), they
can be used as variables in the O-U process, where cquation 2.8 becomes

& = plo

P(C,'Co) = l—p2

2.1

where ¢ values are ENDs of the ceiling C.

An Application of the O-U Process. To understand how these processes work together 1o estimatc a
conditional probabilily, consider a case in which the initial ceiling height is 2,000 feet. In Table 2.1, P(C<2,000
fect) = .23 and corresponds 10 an END of #, = -0.833. Il we assume a serial correlation of p = 0.95, we can
estimatc the probability of a ceiling height less than or equal Lo a specific value at some time, ¢, in the futrc.
For example, suppose we wanl 10 know what the probability is that the ceiling 1 hour later is lcss than 1,000
feet. In Table 2.1, P(C<1,000 ft) = 0.113 which yields an END of & = -1.2(9. Using equation 11, we scc that

-1.209 - (0.95)(-0.833) _
V1 - (0.95)

P(C.iCo) = -1.338 (2.12)

The value of -1.338 is the END of the probability value of the ceiling being less than 1,000 feet, given that the
initial ceiling height was 2,000 feet. The END of -1.338 corresponds to a P(CIC)) = 0.090. Therelorc, there is a
9.0% chance thal the ceiling will fall 1o less than 1,000 feet within 1 hour, given that the initial cciling was
2,000 fect.

5




TABLE 2.1. Transnormalization from Ceiling to END for Loring AFB, ME, January, 1200 LST.

Celling (feet) ~ Cumulative Probability (C<C) END
0 0.000 -00

200 0.009 -2.295

1,000 0.113 -1.209
2,000 0.203 -0.833
5.000 0.269 0.612
10,000 0.351 -0.381
20,000 0.489 -0.032

2.5 Expanding the Conditional Probability Mode! to Two Variables. The conditional probability model shown

in equation 2.6 can only be applied to a time series of a single variable, such as ceiling. But in meteorology, we
are frequently concerned with threshold values of two interrelated variables, such as ceiling and visibility, and
wc arc interested in the probability that one or both will be below certain thresholds. With MODCYV, we can
calculate the conditional and unconditional probabilities given joint threshold values of ceiling and visibility.
The probability of these joint conditions is obtained in two steps. First, individual conditional probabilities arc
calculated for the ceiling and visibility thresholds using:

P(C.ICy) = %']]—'-_p—‘p-ig @.13)

vl - pv vO

P(v.\Vo) = >

2.19)

Py

where C/V, is ceiling/visibility at time ¢ and Cy/V,, is ceiling/visibility at the initial time. The ENDs of the
conditional probabilities (P) are converted back to conditional probabilities of a ceiling or visibility below the
threshold. Next, we subtract this conditional probability from one to obtain the probability of a ceiling or
visibility at or above the threshold, as shown below.

P(CalCo) =1-P(C/iCo)  and  P(ValVe) = 1 - P(V,|Vy) @.15)

where C,/V,, represent a ceiling/visibility at or above the threshold. The joint conditional probability of both
ceiling and visibility being at or above their respective thresholds is obtained by:

P(Cat, VaiICo Vo) =0.7P (CaslCo) P (VaslVi) +O3MIN{P (CutlCo) P (VurIV0) ] 2.16)

By subtracting the result of Equation 2.16 from one, we now have the probability of a ceiling being below a
threshold, visibility being below a threshold, or both being below a threshold. Equation 2.16 incorporaics a
uniyue application of the independence characteristic associated with the probability of two cvents. I two
evenls are complelely independent, then the joint probability is simply the probability of the first cvemt
multiplicd by the probability of the second. If the events arc completely dependent, howcver, then the
probability of either event or of a combined event is just the maximum of the two individual probabilitics.
Equation 2.16 is a weighted combination of these probability concepts developed by Boehm (1977).
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Chapter 3

MODCYV ASSUMPTIONS AND LIMITATIONS

Basic Mathematical Assumptions. As with all deterministic or statistical models, simplifying assumptions
must be made. These assumptions impose limits on the model’s ability to provide sound guidance. Knowlcdge
of these limitations is important to using this model as a f[orecasting tool. MODCV Urics to optimize speed and
accuracy while trying to minimize the need to process large amounts of data.

Modeling Cumaulative Distributions with Weibull Curves. A fundamental assumption of this model is that
the Wcibull and Reverse Weibull curves adequately describe the cumulative probability distributions of cciling
and visibility. A measure of closeness of fit is the root mean square (RMS) difference between the obscrved
and modeled distributions. RMS differences vary by hour, month, and station, depending on the characteristics
of the observed distribution. However, unconditional probabilitics can usually be fit by Weibull curves with an
RMS difference of 3-6 percent, an accuracy that is usually within tolerance for most users.

Temporal Spreading of Modeled Cumulative Distributions. MODCYV is designed to provide probability
information for any hour of any month. To save computer space and time, modeled cumulative distribution
curves werc compiled for 3-hour lime periods centered on 00Z, 03Z, 06Z, YZ, 12Z, 15Z, 18Z, and 21Z. This
was accomplished by including all hourly observations in that 3-hour time period into the empirical distribution.
The assumption is madc that the modefed distribution is valid for any hour within the 3-hour time period.

Inverse Transnormalization. MODCYV inputs ENDs of the cumulative probability for ceiling or visibility into
Equation 2.11. Although the O-U process does not require that the random variable y, is normally distributcd,

the inverse transnormaltization process does. Inverse transnormalization is the process that converts thc END of
the conditional probability P(y,lyo) back (o an actual probability value P (y.lys). This process is equivalent to
integrating the normal density function from minus infinity to the END value of the conditional probability.

The inverse transnormalization process will produce consistently accurate probabilities if thc END valucs arc
distributed N(0,1). Therefore, MODCYV assumes that the END of the conditional probability produced by the
0-U process is distributed N(0,1). This assumption was painstakingly tesied by Berecek (1983). Using
Chi-Square tests and tests for skewness, it was shown that the O-U process consistently produces ENDs of
conditional probabilities that are distributed N(0,1).

Serial Correlation. The O-U process requires a serial correlation (P) as an input to calculate conditional
probabilities. The corrclation values used in this model are 0.95 for ceiling and 0.94 for visibility. They
rcpresent the END correlation between hour-to-hour observations of these variables. It should be cvident that
hourly correlations of ceiling and visibility will vary depending on climate, station, and season. MODCV
assumes that these values are representative for all locations and that any difference from actual station
~yrelation is negligible.




Chapter 4

MODCY INPUT AND OUTPUT

4.1 Observational Input Limitations. MODCYV produces probabilitics of ceiling and visibility that arc consistent

4.2
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in time and representative of a given location. Thc term "consistent” indicates that the scrial corrclations of
ceiling and visibility are preserved in a way that conforms with patterns actually observed in naturc.
Maintaining serial correlations requires that the "past weather" at a given location must be analyzed to obtain
the appropriate probability distributions. USAFETAC has the resources nccessary to provide this type of
analysis because its mission includes permanent archival of all weather observations collected by the USAF
automated weather network (AWN). The quality of the observational data collected and archived,
however,varies by location. Stations in western industrialized nations generally follow WMO procedures and
report on a regular schedule. Data from other locations, particularly those in the Third World, do not always
observe WMO standards nor adhere to synoptic schedules. Data coverage in the lalier regions is oficn sparsc, as
well. Poor daia quality input naturally affects USAFETAC’s ability to use MODCV 1o its full potcntial for
every location in the world.

Data Input Requirements consist of modeling coefficients for each location for which probabilitics arc to be
calculated. There are two sets of coeflicients: one for ceiling and one for visibility, as shown in Table 4.1.
Each set consists of 96 pairs of coefficients representing each of the eight time blocks that were discussed in
Paragraph 3.3 {or each of the 12 months.

TABLE 4.1. Weibull and Reverse Weibull Fenction Modeling Coefficients for
January at Scott AFB, Illinois.

Weibull Reverse Weibull

Time (GMT, o B o 8
0300 0.068906 1.105603 35952148 -0.432142
0600 0.060347 1.103759 35.766785 -0.433737
0900 0.064854 1.118966 39.929581 -0.457944
1200 0.083187 1.082496 37909668 -0.459744
1500 0.100389 1.081702 38.308655 -0.468665
1800 0.080195 1.076881 40.062897 -0.465425
2100 0.102712 0914098 40.241989 -0.465896

Modeling Coefficients. A computer tape of weather data for a typical location contains weather obscrvations
for a certain period of record, usually 10 years or more. These data are stratified by month and time of day.
Threshold values are used 1o define categories of ceilings and visibilities (see Figurc 4.1 for Scmbach AB, West
Germany). Frequency values associated with these categories are tabulated and used to construct the ecmpirical
CDF. The cumulative probabilities that the ceiling and visibility are less than selected thresholds arc calculated
from the historical weather records for each month at the cight 3-hour time periods. The empirical CDF is used
in a lincar regression technique to develop a sct of coelficients for a mathematical function that (it a theorctical
distribution. This distribution-fitting procedure is a fundamental concept that provides geographical realism for
the model. Diumnal, seasonal, and local variations in visibility and ceiling at each location are represented in the
variability of these modeling coefficients.
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Figure 4.1. Observed and Modeled CDFs for Visibility at Sembach AB, January, 2300-0100Z.

4.4 Deriving CoefTicients for Visibility. USAFETAC’s basic modeling equation for the CDF of visibility is
the Weibull curve. Use of the Weibull curve for modeling visibility is well documenied by Somerville, Bean,
and Falls (1979); Somerville and Bean (1981); and Whiton and Berecek (1982). The Weibull curve is
expressed by the equation:

P =1-exp(-axP) @.1

where O and B are the modeling coefficients, X, is some threshold visibility in stalute miles, and P is the
probability that an actual visibility observation (X) will be less than X, . In earlier applications of thc Weibull

distribution, estimates of O, and B were obtained through an iterative solution of the maximum likelihood
equations. USAFETAC uses a different approach, in which values of the cmpirical cumulative distribution arc
regressed on the Weibull distribution function. The calculated coefficients minimize the difference between the
cmpirical and theoretical cumulative distributions; this is advantageous because the objective is to reproduce
the empirical distribution and not estimate O and B for their own sakes. The technique is as foliows:

(1) Let Q = /-P (the probability that X is greater than X ) and substitute into Equation 4.1.

Q = exp (-0X/) @2




4.5

(2) Take the nawral logarithm of each side of Equation 4.2.
InQ = -0x? 4.3)
(3) Multiply each side of Equation 4.3 by minus one; once again, take the natural logarithm of each side.
In(~InQ) = In0L + BinX, 44

(4) Estimates of O and B are obtained by fitting a straight line o the set of ordercd pairs of InX, and In(-InQ) by
a least squares technique. Using this data and the normal equations for a straight line, the solution for B is:

8= nZ(1n X)) (In(-1nQ)) - (Z1n X,) (Z1n(-1nQ))
- nZinX,? - (Z1nX)?

4.5)

and the solution for O, is
o= exp (In(=1nQ)) - BX, (4.6)

(5) For successful application of this technique, Q must be greater than zero but less than one, since In(-InQ)
will be defined for those values. One problem does result from this technique: although the root mean square
ermor (RMSE) is minimized in In(-InQ) space, the RMSE is not necessarily minimized in Q space. A weighting
factor (WF) is necessary (0 minimize the RMSE; the resulting equations for O and B arc:

_ IWFX(inX,) (1n(-1nQ)) (WF) — (ZWFInX,) (ZWF 1n(-1aQ))

’ (EWFEIWF1nX?) - (ZWF InX,? @.n
- IWFInX,
a=exp (ZWFln( 1nQ) _8 n ) “n
where: WF = (QInQF @9)

Deriving Coefficients for Ceiling. USAFETAC uses a slightly different version of the Weibull curve (calied
the "Reverse Weibull") to fit ceiling data to a cumulative distribution. The Reverse Weibull curve is given by:

P =exp(-ax?®) @.10)

where 0L and B are modeling coefficients determined from the empirical distributions, X, is some threshold valuc
of cciling in feet, and P is the probability that an actual ceiling observation (X) is less than X, . The tcchnigue

used to solve for O and B is similar to that used and shown earlier. A straight line is fit to the ordercd pairs of
the data In X and In(-InP) using the normal equations. Again, a weighting factor (WF) is applied 0 minimizc
the RMSE in P space. The resulting equations for O and B are:

_IWFI(1nX,) (1n(=1nP)) (WF) — (WFinX) (WF 1n(-1nP))

: (EWF) (EWF1nX?) - (EWF 1nX2) @1
a:ﬂ,,(méwl_@_ﬂzwmnx,) @.12)
where: WF = (PInP} @)
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4.6 An Example of Fitting the Cumulative Distribution Function. The [irst step in the process of fitting a curve
10 a cumulative distribution (CDF) is to select a series of threshold values {or the variable of intcrest--Table 4.2
lists a series of such threshold values(X ) for visibility.

TABLE 4.2. Empirical and Modeled Cumulative Probabilities that the Visibility
Was Less Than Selected Threshold Values for Sembach AB, January, 2300-0100Z.

Threshold Visibility = Observed Visibility = Modeled Visibility
X, P(X<x) P(X<x) Residual
0.313 0.004 0.006 -0.002
0.500 0.011 0.013 -0.002
0.625 0.018 0.019 0.001
0.750 0.029 0.025 0.004
1.000 0.040 0.040 0.000
1.250 0.061 0.058 0.003
1.500 0.068 0.078 0.010
2.000 0.086 0.123 €0.037
2,500 0.189 0.174 0.015
3.000 0.235 0.229 0.006
4,000 0.339 0.343 -0.004
5.000 0.467 0.458 0.009
6,000 0.556 0.564 .008

The next step is to calculate the observed [requency of visibility below that threshold value (P(X<X)) for a

given month and time. Using equations 4.7 and 4.8, coefficients O and B (which fit a specific Weibull curve 10
the observed distribution) are calculated. Table 4.2 lists these observed and modeled frequencics for Sembach
AFB, West Germany, for January between 2300 and 0100 GMT. The 0. and B values that produce the modcled
frequencies are O = 0.041413 and 8 = 1.672692. In this example, the modeled distribution fits the obscrved
distribution very well. The RMS of the fit was 0.012 and the maximum absolute difference between two curves
at any one threshold value was 0.037. Figure 4.1 (on page 9) shows how the Weibull curve fits the obscrved
distribution; fiting a curve 10 the observed frequency of ceilings is done in much the same way. After selecling
threshold ceiling values, the observed distribution is calculated. Then coefficients & and B are calculated with
Eyuations 4.11 and 4.12. Finally, a specific Reverse Weibull curve is fit to the observed ceiling distribution for
a given month and hour.

4.7 An Example of Calculating Single-Event Unconditional Probability. Table 4.1 (on page 8) contains all O

and B coefficients for the Weibull and Reverse Weibull functions for January at Scott AFB, IL. To computc an
unconditional probability of a single event, we simply enter the value of interest into the appropriate equation
using the O and B values. For example, we may want to determine the unconditional probability of a cciling
less than 4,000 feet at 0600Z at Scott AFB in January. The Reverse Weibull function is used to model the
ceiling distribution; O and B8 for 0600Z in January are 35.766785 and -0.433737. Using Equation 4.10 and a
value of X, = 4,000 feet,

P(C<C) = exp (-oxi) 4.10)
P (C<4000 f1) = exp[-35.766787(4000)-2433737]
P (C<4000 f1) = 0375
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we determine that the unconditional probability of a Scott AFB ceiling less than 4,000 feet at 0600Z in January
is 0.375, or 37.5%. The same process is used to calculate unconditional probabilities of visibility, using
Weibull function coefficients and Equation 4.1.

4.8 An Example of Calculating Joint-Event Unconditional Probability. Paragraph 2.5 discussed the two-step
process required to calculate joint probabilities. In this example, we want to determine the unconditional
probability of ceiling less than 3,000 feet and/or visibility lcss than 3 miles at 0600Z in January at Scou AFB.

The [irst step is to calculate the single event probabilities. For ceiling, O = 35.766785 and 8 -0.433737. Using
Equation 4.10 again, we find that the unconditional probability of ceiling less than 3,000 feet is 0.329.

P(C<C) = exp (-aX?}) 4.10)

P (C<3000 f1) = exp [-35.766787(3000)-0433737]
P(C<3000 [1) =0.329

For visibility, & = 0.060347 and B8 = 1.103759. Using Equation 4.10 once more, we find that the unconditional
probability of visibility less than 3 miles is 0.184,

P(V<V) =1-exp (-ox?) @.)

P (V<3 miles) = 1-exp [-0.60347(3)197%)
P (V<3 miles) =0.184

. The probabilities above the threshold, therefore, are 0.671 for ceiling and 0.816 for visibility. The joint
probability of these two single events is calculated by using Equation 2.16 and the unconditional probabilitics
above the thresholds. The joint probability of ceiling less than 3,000 feet and/or visibility less than 3 miles
{P(C<3000 ft andfor V< 3 miles))] is 0.416 or 41.6%.

P (C23000 f1, V3 miles) =0.TP (C23000 f1) P (V3 miles) + 0.3MIN |P(C23000 1), P(V23 miles)] (2.16)
P (C23000 ft, V23 miles) = 0.7(0.671)(0.816) + 0.3(0.617) =0.584
P(C<3000 ft and/or 3 miles) =1 -0.584=0.416

4.9 An Example of Cailculating Single-Event Conditional Probability. To estimate the conditional probability
of an event, we need the initial condition and the threshold condition at time 1. For example, say that the Scot
AFB cciling is 3,000 feet in January at 0600Z, and that we want to know the conditional probability of a ceiling
less than 2,000 feet at 1200Z. The first step is to calculate the unconditional probabilitics associatcd with the
initiat condition and the threshold value at time ¢. The unconditional probability of a ceiling less than 3,000 feet
aL 0600 GMT was calculated in the preceding paragraph as 0.329. The unconditional probability of a ceiling
less than 2,000 feet at 1200Z is then calculated to be 0.316, as shown below:

P (C<2000 f1) = exp [~37.909668(2000)~045944]
P(C<2000 f1) =0.316

The second step is to transnormalize the probabilities of these events (using the transnormalization process
. discussed in paragraph 2.3) to convert the probability to an END. We do this by using Equation 4.12, in which
P is the unconditional probability and p is its END.

12
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p=491[p*" - (1-p)*¥] 4.14) ’
P (C<3000 fr) =4.91[0.329%1 - (1-0.329)"14]
BC<3000 f1) = -0.441

The END of the probability of a ceiling less than or equal to 3,000 feet at 0600Z, therefore, is -0.441. Using the
same process, the END of the probability of a ceiling less than 2,000 feet at 1200Z would be -0.477.

The third step uses the END values and the Ornstein-Uhlenbeck equation (Equation 2.6), where

B(yo) =-0.441 and PO =-477.

This process yields the END of the conditional probability (5(y. yo)), where ¢ = 6 hours, and p=p,’ where py =
0.95. The value of the conditional probability of y, = 2,000 feet, given y, = 3,000 fect, is -0.489.

(~0.477)—(0.95)° (-0.441)
= 2000 ftlyo = 3000 ft) =
p(yﬁ f D’O f) \[1_(0.95)2

=-{).489

The final step is to convert the END of the conditional probability to an actual probability value. This process,
known as "inverse transnormalization,” can be accomplished mathematically using Equation 4.15.

1

F= {1+ exp[-p(0.07p° + 1.6)]} .15

Inserting the END of the conditional probability into Equation 4.13 yields 7 = 0.312. In other words, given an ‘
initial 3,000 foot ceiling at 0600Z, we would expect the 1200Z ceifing (o be below 2,000 feet 31.2% of the time.

4.10 An Example of Calculating Joint-Event Conditional Probability. Single-event conditional probabilitics of
both ceiling and visibility are necessary to compule the joint conditional probability. Each single-event
conditional probability is computed using the procedure outlined in the previous section. Thosc singlc-cvent
conditional probabilities are converted to probabilities above the threshold, then used as input to Equation 2.16
to estimate joint conditional probability. Subtracting this value from 1 gives the probability of ceiling,
visibility, or both being below the threshold.

To explain further, let’s use some information from the previous example. The 0600Z ceiling and visibility arc
3,000 fect and 3 miles. Suppose we want to find the joint conditional probability of a 2,000-foot ceiling and/or
a 2-mile visibility at 1200Z. We already know that the conditional probability of a 2,000-foot ceiling at 1200Z,
given that the 0600Z ceiling was 3,000 feet, is 0.312 or 31.2%. Using the Weibull function and setting p, =
.94, we find that the conditional probability of a 2-mile visibility at 1200Z, given a 0600Z visibility of 3 miles,
is 0.150 or 15%. Again, we convert the probabilities to above the threshold, or 0.688 for ceiling and 0.850 for
visibility.

Next, we enter these conditional probabilities into Equation 2.16, as shown, 1o calculate the joint conditional
probability. We find the conditional probability of a 2,000-foot ceiling and/or 2-mile visibility at 1200Z to be
0.385 or 38.5%.

P (C22000 f1, V22 miles|C23000 f1, V23 miles) =0.7P (CaiCo) P (Vai Vo) + 0.3MIN|P (CarlCo) . P (VailVo)l
= (.7(0.688)(0.850) + .3(0.688) = 0.615 (2-16) ‘

{C<2000 ft andior V<2 miles) = 1 - 0.615 = 0.385
13




4.11 Model Output. Complete examples of MODCV output are provided in Tables 4.3 through 4.6. Cciling and

visibility categories are specified by the user and are printed along the left margin. Times printed along the wp
designate each time step. Probabilities at each time step will total approximately 100% (£2%) due 10 rounding
emors. Unconditional probabilities represent climatological averages; conditional probabilitics modily them
according to the current condition.

4.11.1 Unconditional Visibility Probability. Tablc 4.3 gives unconditional visibility probabilitics for Ramsicin AB,

West Germany, during January. The first category is for visibility below 400 meters; probabilities vary from
1-3% throughout the 24-hour time period. The second and succeeding categories represent the inlerval greater
than or equal to 400 meters but less than 800 meters, and so on. The lasl calegory represents the interval from
greater or cqual to 8,000 meters to positive infinity. Categories are cumulative; therelore, there is a 22%
probability of a visibility less than 3,200 meters at 07Z. Unconditional probabilities change only when
coefficients change to match the proper 3-hour time periods. Note the same probabilities for 06-08Z, (09-11Z,
etc. Interestingly, the climatology for 15 and 18Z are similar even though the coellicients are slightly dilfcrent.

TABLE 4.3. Modeled Visibility Unconditional Climatology, Ramstein AB, January, 0600Z.

CatTopMeters 07Z 08Z 092 10Z 11Z 12Z 15Z 18Z O0Z 06Z

"'TUUL VY 3 I T 1
800 3 3 3 3 3 2 2 2 2 3
1200 3 3 3 3 3 2 2 2 2 3
1600 3 3 3 3 3 3 2 2 2 3
3200 1M1 13 13 13 11 10 10 10 1
4800 10 10 12 12 12 11 10 10 9 10
8000 18 18 20 20 20 21 19 19 16 18
99999 ST S1 43 43 43 49 53 53 55 51

4.11.2 Unconditional Joint Probability. Table 4.4 gives joint unconditional probabilities of ceiling and visibility

for McChord AFB, WA, during January. The ceiling and visibility categories are combined (sec Paragraphs 2.5
and 4.10) to produce a weighted probability. This table will produce different probabilitics than individual
ceiling and visibility tables. Once again, note the change of probability with the change of cocfTicicnts at
13-14Z and 15-17Z.

TABLE 4.4. Modeled Ceiling/Visibility Unconditional Climatology, Mcchord AFB,

January, 1200Z.
Cat Top Feet/Mi 132 14Z 152 16Z 172 18Z 21Z O0Z
_’tﬁﬂ. S w7 6 o 6 3 3 3
500/.5 7 71 1 7 7 7 4 4
1000/1 111”1212 12 1t 10
1500/1.5 9 9 9 9 9 10 10 10
2000/2 7 7 7 7 7 8 9 8
2500/3 7 7 7 7 7 7 8 9
3000/7 1Mo o13 13 13 14 15 18
999979999 42 42 39 39 39 36 40 38

4.11.3 Conditional Ceiling Probability. Table 4.5 shows conditional ceiling probabilities for Ramstcin AB during

January at 0600Z, given a ceiling of 900 feet. Again, note that the categories are cumulative. The function can
be broken into many segments, but they still add up to the whole. For example, at 12Z there is a 35%
probability that the ceiling will stay below 1,000 feet. The probability of a ceiling below 3,000 feet but greater
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rounding. Use of conditional probability by a forecaster is subjective. A commonly used technique is 10 key on
the largest probability above or below a certain threshold, then modify it with other dawa. For example, recent
frontal passages or yesterday’s timing for improving conditions should be considered. Caution should be
exercised depending on how the categories were set up.

or equal (o 1,000 feet is 52%. If the first category were 3,000 feet, the probability would be 87%, + 1% for I

TABLE 4.5. Modeled Conditional Climatology, Ceiling 900 feet, Ramstein AB,

January, 0600Z,

CatTopFeet 07Z 08Z 092 102 11Z 12Z 1SZ 18Z
iy T

500 i 4 5 6 7 4 3 5

1000 59 50 43 40 37 31 23 22

1500 34 30 29 26 25 25 21 18

2000 6 10 12 13 13 14 14 12

2500 1 3 5 6 7 8 9 9
3000 0 1 3 3 4 5 6 6
99999 0 ] 3 6 8 12 22 27

4.11.4 Conditional Joint Probability. Table 4.6 shows joint conditional probabilities of January ceiling and
visibility for McChord AFB at 1200Z. If you compare Table 4.6 with Tablc 4.4, you'll scc how much of a
difference the current condition can make. The third category (1,000/1) changes the most a1 13Z, increasing
from 11% 10 46%. Of course, both current conditions fall into this category. If either current condition were in
a higher or lower category, the probabilities would change accordingly. The joint table probabilities will be
different than the ceiling or visibility conditional tables alone. The joint probabilities will usually be higher in
the lower categories since two conditions are used. Another tendency of MODCV’s conditional probabilitics is .
to favor the current condition category. In Table 4.5, the third category (1,000 feet) continues to show a high
probabilily (22%) at 18Z. Similarly, in Table 4.6, the category that contained the current condition has the
highest probability (18%) at 00Z. Using the highest probabilities is a good first guess, but remember that
categories are cumulative--interpret them with respect to the initial conditions.

TABLE 4.6. Modeled Ceiling/Visibility Conditional Climatology, Ceiling 800 Ft/
Visibitity .75 Mile, McChord AFB, January, 1200Z

CatTopFUMi 13Z 142 152 16Z 172 182 217 O0Z
!'U&.‘!S I B & SN 1 S - SRS U Y A
5001.5 2 21 20 19 18 17 10 8
1000/1 46 36 31 28 26 21 23 18
1500/1.5 17 17 17 6 15 16 18 16
200012 4 7 8 8 8 9 12 II
25003 1 3 4 5 6 6 9 10
3000/7 0 2 3 5 6 71 10 15
9999/9999 0 1 2 4 5 6 13 15
15
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Chapter 5

MODEL VERIFICATION

General. Eleven stations, selected to allow for verification under different climatological regimes, were used W
test MODCV's capabilities; they are:

RAF Mildenhall, UK  Shaw AFB, SC Ramstein AB, West Germany McChord AFB, WA
Osan AB, Korea Clark AB, RP Shemya AFB, AK Eglin AFB, FL
Minot AFB,ND Lajes AB, Azores  Cannon AFB, NM

MODCYV was tested against wind stratified conditional climatology (WSCC). The Bricr skill (P) scorce, which
will be discussed in Paragraph 5.2, was used o compare the probability forecasts. The paired t-tcst (1o be
discussed in Paragraph 5.3) determined the statistical significance of P-score differences beiween MODCYV and
WSCC.

Brier Skill (P) Score. The P-score takes the form of:

w[EE ,5 Ui - E?]

Where r is the number of forecast categories, N is the number of days, f is the probability forecast of the cvent
occurring in that category, and £ takes the value of one or zero according to whether the ceiling or visibility
occurs in that category. P ranges from () (perfect) to 2 (worst). For this test, we used six categorics derived
from WSCC tables, as shown in Table 5.1.

s.1n

TABLE 5.1. Brier P-Score Input and Qutput for RAF Mildenhall,

MODCYV Verified MODCY Verified
Forecast (f) Category (E Forecast Category (F)
. T — | e —
0 0 B (200-499 fy) 0 0 B (200-499 f1)
02 0 C (500-999 f) 0 0 C (500-999 1)
37 0 D (1,000-2,999 (1) 0l 0 D (1,000-2,999 )
49 0 E (3,000-9,999 fy 21 0 E (30009991
12 1 F (210,000 1) 78 1 F (210,000 1)
28 25

0 0 A (0-1991)

0 0 B (200-499 ft)

0l 0 C (0099 e

32 1 D (1,000-2,999 f1)

52 0 E (G000-999 1)

A5 0 F (210,000 f1) 0 0 A @190

27 0 0 B (200-499 1)

0 0 A 01991 0 0 C (500-999 1v)

0 0 B (200-499 1) 02 0 D (1,000-2,999 )
0 1 C (500-999 1) .26 0 E (3.000-9,999 i)
11 0 D (1,000-2,999 ft) 72 1 F (210,000 1)

49 0 E (3,000-9,999 f1) 1
39 0 F (210,000 1)

26 P =.6852106
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Verification data was collected during the month of February 1987. Because of the sheer bulk of the data that
had w0 be entered manually, only two forecasts (for 3 and 24 hours) were verified. As an example, Table 5.1
shows Mildenhall’s MODCYV ceiling probabilities (f) for the six categories and the category observed (£) at the
3-hour point for the Mildenhall afternoon forecast. A skill score of .685 is caiculated for the 28 days in
February. Skill scores for WSCC and MODCYV were computed at all 11 stations and for both verfication timcs.
Table 5.2 shows the skill score for WSCC ceiling (WC) and visibility (WV), and for MODCYV cciling (MC) and
visibility (MV). As you can see, Mildenhall’s alternoon ceiling 3-hour verification (MC = .69) wasn’t as good
as WSCC'’s (WC = .64). But Osan’s morming MODCYV visibility verified al 24 hours (MV = .28) is beuter than
WSCC’s visibility (WV = .42). Clark’s dala could be misleading, but almost all forecasts were verified
correcty in category F. The P-scores show a wide range of resulls.

TABLE 5.2. Forecast Verification Results (P-Scores) for 11 Stations.

Morning Afternoon
3 hours 24 hours 3 hours 24 hours

WC MC WV MV WC MC WV MYIWC MC WV MV [WC MC WV MV
MILDENHALLY 53 60 .26 45§147 .78 60 61 §f 64 6Y 38 37 | .72 .75 43 48
CANNON 22 41 29 291 42 55 38 43 1025 38 12 02 ) 21 48 25 .26
LAJES A8 23 07 07 .26 34 00 .00 26 49 00 34 ) 47 45 14 14
OSAN 01 a1 27 30108 09 42 281 .16 09 51 64 ) 28 27 47 50
MCCHORD 30 32 21 173 .35 39 .18 21 09 11 00 054 .01 a8 .01 02
SHEMYA 40 42 26 27169 66 47 46 ] 52 51 35 33 ) 56 62 55 48
EGLIN 21 031 20 27151 45 29 27 130 23 025 A8 1 49 S3 33 32
SHAW 27 24 26 21166 42 25 260} .30 34 31 3] 66 36 22 20
MINOT 53 62 33 421 68 67 20 21 S 46 11 14 ] 69 64 34 29
CLARK 00 00 01 00101 00 00 001 .00 00 1 0] 00 00 00 00

5.3 Paired T-test. The paired t-lest was used to determine if differences between MODCV and WSCC P-scores

were statistically significant. The mean differences (d) between MODCYV and WSCC P scorcs were calculated
from Table 5.2. The following steps were performed:

a. Null Hypothesis: (Hp) : Ky = Ryopev - Hwsce =0 (No difference)
b. Alternate: (H,) : i, # 0 (Some difference)

c. Test Suatistic: |t} = zﬁ%

5 where d and s, are the mean and standard deviation of the n differcnces.
d

d. Rejection Region: With 87 degrees of freedom, we reject H, if 1t|>1gsp. Therelore, P (Jt| 2 ¢) = o, which is
cqual to the probability of rejecting H, when it is indeed true.

e. Conclusion: For this analysis, 04/2 = 0.025 gives a critical value ¢ = 1.99. It follows, then, that (o reject the
null hypothesis (Hg) of no difference, our calculated lil must be 2 1.99. Substituting the appropriate valugs into

our test statistic we lind: \
= ~270+107° -0 = 0.226
0.1 |2/Q(88)
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At the 0.05 significance level, Ul = 0.226 is not greater than or equal to 1.99. We thercfore failed to reject the
null hypothesis and conclude that there is no statistical significant difference between the P-scores for the
WSCC forecasts and the P-scores for the MODCYV forecasts. MODCYV shows good skill when compared o
WSCC 1ables. Although these results are based on the verification of only 11 stations for the month of February
1987, the resulis are similar 1o those found in a test conducted by AFGWC (Globokar, 1978). Modcling,
therelore, offers a viable alternative for representing climatologies of ceiling and visibility.
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Chapter 6
SUMMARY AND CONCLUSIONS

MODCYV was created to make available climatology easier to use. This uscr-friendly program provides an
cntire yecar's ceiling and visiblily probabilitics for various stations at the touch of a button. It replaces the
considerable bulk of the WSCC and RUSSWO, as well. Climatology for dozens of stations can now be simply
and casily maintained for planning, mobility, and similar applications.

This electronic convenience, however, is not without the expense of some accuracy. Modcling of CDFs with
the Weibull curves, for example, introduces a 3-6% error. But compared to the benefits, this crror is minimal.
Modcling also produces a conmtinuous curve that can account for extremes that haven’t occurred and for
thresholds that aren’t commonly recorded (3,300-foot ceilings, for examplc).

Unconditional climatological probabilities can be calculated as the area under the curve for that station and time
period. Conditional probabilities can then be computed using the Omstein-Uhlenbeck equation, a first-order
Markov process. The Markov process gives a future value of a given weather variable using its current statc and
a scrial correlation. The methodology in MODCYV requires that the weather variablcs be converted 0 an
cquivalent normal form. This is accomplishcd through transnormalization, which simplifies the mathematics.
The algorithms then produce unconditional and conditional climatological probabilities from the samc
databasc.

Although theory indicated that the program described in this report was valid, the output needed verilication. A

1-month study (documented here) was conducted to compare MODCYV to the accepuible WSCC. Bricr scores
were shown 10 be statistically the same , indicaling that MODCYV is praclical for opcrational use.

19




DISTRIBUTION .

AWS/DN, SCOU AFB, IL 62225-5008 ........coccvierrereerreircsreersrmessneseesssosssesarasasssnssssesssssssatsssessassesarestsasessssnsssssnnsssnsses 3
OL A, HQ AWS, Buckley ANG Base, Aurora, CO 8O011-9599.........riiiiernienrsenrnrnienniornerneesaressresesissssesssessssmenns 1
OL-B, HQ AWS, Langley AFB, VA 23665-5000 ........ccoeovueriimenenerrsinsesisessssssasassissnssssssssssssssssssssssssissssassssassssasssessins |
AFOTEC/WE, Kirtland AFB, NM 87T17-T001.....c.cooeiviecreeirierreiiinsninisnseerssssaessssssssstsasssssessssesssssessssssssssesssestasesenssss |
CACDA, OL-E, HQ AWS, ATZL-CAW, Ft Leavenworth, KS 66027-5300......ccccvrviireremvermirrnsnniseessssmmssssminesnens l
SD/CWDA, PO Box 92960, Worldway Postal Cur, Los Angeles, CA 90009-2960 ..........cccerrevrrirnrrnnsvnnesnereseesens 1
OL-H, HQ AWS (ATSI-CD-CS-SWO), Ft Huachuca, AZ 85613-T000 .......cccccvvrmvremicrrnernenecrseersneresssrsssansnssssesasees 1
OL-1, HQ AWS (ATDO-WE), Ft MONroe, VA 23651-5000) .......c.ccoevrrrrirrrrrirersunmssissssssssssssssssssssssesessesssssssesessesesssnens 1
AFOTEC OL-NX, 1313 Halley Circle, Norman, OK 73069-8493............cccvvimnrcmnnerreriinesssssssssnsssmsevsssssssrssarosenss 1
OL-L, HQ AWS, Keesler AFB, MS 39534-5000..........c.ccecsrurererrererruerssessesictssseesssesstasssssessssssssssssseassssssssesssssesatasssosaress I
SM-ALC/MMA, McClellan AFB, CA 95652-5609.........cccovccmmierereteetiresesssisissesessssssessssssssssenssssssssssssssssssnsesssssssssans i
Dct 1, HQ AWS, Pentagon, Washington, DC 20330-6500.......c..comiivineiirenenrreninrersneasenesessesssesssssssesesesissssenesrassens 3
Dct 2, HQ AWS, Pentagon, Washington, DC 20330-5054 ...t seesenneessessesnec o seseesesessosssssasessssses 2
AFSCF/WE, PO Box 3430, Onizuka AFS, CA 94088-34300...........ccovervrirenienivenrriessaisrorssnsssnssrsansesssssnissnsssssssssnsossos 1
Dct 8, HG AWS, PO Box 4239, N Las Vegas, NV 8903()...........coovremninnrei i isisnseseesssssssssessssssimsssansesssrssssansess l
DctY, HQ AWS, PO Box 12297, Las Vegas, NV 89T12-0297 ...t ire sttt essse s seseeebenenes 1
TWW/DN, Hickam AFB, HI96853-5000..........cccceeunmernirererienianseasserssnesenssessosiossssssssssssssesessansesescsnsosesssasesssasesmsasasasesen b
20WS/DN, APO San Francisco 96328-5000 ..........cccrurmeriinsrernesnsorersssassssssnssssesssesasscsrasarssssssssssnssssssasessssess 1
JOWS/DN, APO San Francisco 9630 1-04200...........ooviniieeiierrareirirsrenieeisesssessssesssssessasssssesssasssssssseesarssesas 1
2WW/DN, APO New YOrk 09094-5000)......corinieiniiecnneniintnierniesiesensesastesessssessesessesasssssesessensssessessosssessessessessssosassonrnses 3
TWS/DN, APO New YOrk (09403-50000..........ccoceoerreeriiriirnterreenesiereressaesisesasssasssassesssesssessessssssensssssssnsesssensssssesns 1
DRWS/DN, APO NEW YOK 09127-5000......ovccreeeserseeeesrrscrssners s st esssesissseess s soee st ! ‘
31WS/DN, APO New YOIK 09136-5000.......c0c00rueetererrnrerrestnrsesssirsesssarssssarsssasssssssssssssssnssssassnensssssarssssssssarasssssssans 1
IWS/DN, March AFB, CA 92518-50000.........ccciiuurnmrenrennierecnnsensesssssssssssessssssssssasssssorasssssmsssassssssssssssssassesesees 1
11WS/DN, Eimendorf AFB, AK 99506-500)........ccoecveomrioreeeireererersrsessenaesereresssssssssssssssssssssassssssssssnssssssessssasns I
24WS/DN, Randolph AFB, TX T8150-5000 ... .cconiuimiirrmineressrcrenssesrsiseseisseassessesssssensessosssssessnesssscssecaseras !
26WS/DN, Barksdale AFB, LA TUIT0-5002 .........ooimirinieniienmerecnresiecmssnssesessesteseeestoeesaonssasss sessesaesssssess |
2WS/DN, Andrews AFB, MD 20334-5000........ccceccceruvmrecrrrrermiorssoressssssserssessesssssssssssessaessaesesssessseussssssesessersos 19
SWW/DN, Langley AFB, VA 23605-50000........cc.ccnirmiiinrrrireirsrersinissssssscssonsssssssssssssscssssssssesssssesonssonsassanssassrasssas 3
TWS, MacDill AFB, FL 33608-5000..........ccieecireriereamreeniens e iesessssssecssssssssesssesess essssessssessscssssssasssssnsessasenss ]
IWS/DN, Shaw AFB, SC 29152-50000......o.cueuiereirnarernitiennerernestsnessoesesssessasssesesssassssoresesssssesssesesanesacs R l
SWS/DN, Ft McPherson, GA 30330-5000 ........coomiiimirnericreseerstenssessesssesssessscsasesssseassssssssasesesssessssnesanens 1
2SWS/DN, Bergstrom AFB, TX TBTA3-5000........c.ommmin it cresie e e ssesssnesssesesesssssns !
AFGWC/SDSL, Offutt AFB, NE 68113-50000.........coociieririrereeritrercinise s e sesessesesescssssoasssesssesessssscssasnssessssonssesassens 5
USAFETAC, Scotl AFB, IL 62225-5438 ......coeecirrireereeerrieinssessressssssesssssssnsesesessnssssssassssensssssssssenssssserssenssses 10
TWW/DN, Scott AFB, IL 62225-5008...........ccccooirieeriiisineimernsniermreressssssonisssissiossusssassenssesssssesssesssssasssssasesassrasasssssess 3
6WS, Huslburt Field, FL 32544-5000)........ccccvcriimiireereirrerseress s sestsesssssssssasessssresessscssssssstssassss osssesassssssasssaassens i
15WS/DN, McGuire AFB, NJ 0B641-5002..........c.occemrereeirreernetearersramssssiesssssnissssosessaesssesesssanssssssssescrasessassass 1
17WS/DN, Travis AFB, CA 94535-5000 ......cuccoviviererirerirerensetsacerssasssierosessssssnssstsssesssossssssssssssserssssesssmassssasssns |
JSOC/Weather, P.O. Box 70239, Fort Bragg, NC 28307-5000 ..........cocceerrenrrirrieerinrirsnneesreesessrssssssssessessssessessassess 1
3350 TECH TG/TTGU-W, Stop 62, Chanute AFB, 1L 61868-5G00 ......cc.ccooonvrnennieenecnrereriseneennsecarenseseseesssessssense 2
AFIT/CIR, Wright-Patterson AFB, OH 45433-6583 ........oooviiiicirecrnmerieer it et sn s sss b ssss s senss s 1
AFCSA/SAGW, Washinglon, DC 20330-5000 .........ooiiereirrieeneieertnenrreenraerseerseessseseessressssssssssessesssessesssenesesssssssses 1.
NAVOCEANCOMDET, Federal Building, Asheville, NC 28801-2723..........cocoooinvniniisee e sesssesse s senens 1
NAVOCEANCOMDET, Patuxcnt River NAS, MD 20670-5103 ........ccocoviunmiecnrecrnnirercsssreseesees e e sseseseneees 1 ‘
COMNAVOCEAN, NSTL, Bay St Louis, MS 39529-5000.........ccocoeeirernrecrnccrnesesiesinecsessesse st sssssnsssnsens ]




NAVOCEANQO, Code 4601 (Ms Loomis), NSTL Bay St Louis, MS 39529-5001..........ccooneincinrrsincniencseneiinnens 1

NEPRF, MoNLCrey, CA 93943-5006 ......c.ccovverimmmimircnmmiieiinmiiissesisisasssssssisisssssissssessassassstsrsessssssessasssssstsssssessons !
Naval Research Laboratory, Code 4323, Washington, DC 20375 ........ccocoenieimrininicniesnnionessnmscsoneseessssssssssssscsns 1
Naval Postgraduate School, Chmn, Dept of Meteorology, Code 63, Monterey, CA 93943-5000..........ccceevvcecrremenncen. 1
Naval Eastern Oceanography Cur, U117 McCAdy Bldg, NAS Norfolk, Norfolk, VA 23511-5000.......ccccorvereverrreranen. I
Naval Western Oceanography Cur, Box 113, Attn: Tech Library, Pear] Harbor, HI 96860-5000 ..........ccoceeevevennnnene 1
Naval Occanography Command Ctr, COMNAVMAR Box 12, FPO San Francisco, CA 96630-5000 ............cee.eens 1
Federul Coordinator for Metcorology, Suite 300, 11426 Rockville Pike, Rockville, MD 20852.......c.oooervvenirercevrennanns |
AFGL Library, Attn: SULLR, Stop 29, Hanscom AFB, MA 01731-5000......ccovvcinrnenerroirtecerresieseeeere st sneseassnsns ]
Atmospheric Sciences Laboratory, Altn: SLCAS-AT-AB, Aberdeen Proving Grounds, MD 21005-5001 ................. 1
Atmospheric Scicnces Laboratory, White Sands Missile Range, NM 88002-5501 ..o 1
U.S. Amy Missile Command, ATTN: AMSMI-RD-TE-T, Redstone Arsenal, AL 35898-5250 ........ceeevenvreirvrcrnnns 1
Technical Library, Dugway Proving Ground, Dugway, UT 84022-5000.........cccovrmmimminncinne e csenceninosesenennes 1
NCDC Library (D542X2), Federal Building, Asheville, NC 28801-2723........ooeeriercceretcnsentsasssssnsesasessesesssene 1
DTIC-FDAC, Cameron Station, Alexandria, VA 22304-6145 .........cueecermrereeeriirresesissiissscessssssssssesssssesssssssssssesessss 2
NIST Pubs Production, Rm A-405, Admin Bldg, Gaithersburg, MD 20899............ccoooriiirenns i rcnnssneciceeananes 1
ANG Weather Flights (through AWS/RF) ..........cmicieireereenietnriseorsiesssnnesisssssessssssesssssssssssassssesssssnsnsorsssnsssassssssssssen 40
75th Ranger Btn (Autn: Lt David Musick), Ft Benning GA 31905-5000........ococo it nteesteestaeseeeneasens 1
HQ 5th U.S. Army, AFKB-OP (SWO), Ft Sam Houston, TX 78234-T000 .........cccccvrrrerneeiniesnncrsnssonns reemaisssesnens 1
CNVEOQ/DN, ASL MET Team, Ft Belvoir, VA 22000-5677 ......cccccrimivninirmneitnesionecnssosecsssmmcssmrsssessssssssssssssesssssons 1
AUL/LSE, Maxwell AFB, AL 36112-5564 ........coociiieiecrnieetcrie s seeesersesesssiaesens e stsestuesrasasssisesssessasssrasasasssssssascs 1
AWSTL, SCOU AFB, IL 62225-5438 .........ocoeerrreeeerneeeanesesssaentsenesanesssess sassessesesusessessossssssesssasssenssassasssesssssesssssesses 125




